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Data assimilation: concept 
 
Kalman filter and ensemble Kalman filter 
• Adaption to specific problem: assimilating GRACE into hydrological model (WGHM) 
• What do you have to think of, that might not be told in the textbook? 
 
Example: Assimilation results 

Outline 
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Data assimilation: Concept 
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Climate input data 

Time series of, e.g., 

- Precipitation 

- Temperature 

- Solar radiation 

- Air humidity 

Model output 

Time series of, e.g., 

- Water storage 

- River discharge 

- Groundwater recharge 

Model parameters 

- describing, e.g., topography, 

vegetation, soil characteristics 

- conceptual parameters 

Evaluate model 

performance 

Model equations 

representing water 

fluxes and storage 

processes 

Modify (Calibrate) 

Stop if 

acceptable 

Observed data 

- river discharge 

- GRACE water storage  

- soil moisture 

- water level (altimetry) 

- ET products 

-…. 

Data assimilation 

(See also lecture: Modeling the hydrological cycle) 

Data assimilation 
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Overview 

(Hydrological) model 
 

Observations (e.g. GRACE) 
 

Data  
Assimilation 

(DA) 

Better description of reality (= better estimate of 
water storages)  

(NASA) 
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Overview 

(Hydrological) model 
 

Observations (e.g. GRACE) 
 

Data  
Assimilation 

(DA) 

Better description of reality (= better estimate of 
water storages)  
Disaggregation of the integral GRACE signal:  
• horizontally 

Higher spatial resolution 
 GRACE 

 
DA result 
 

(NASA) 
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Overview 

(Hydrological) model 
 

Observations (e.g. GRACE) 
 

Data  
Assimilation 

(DA) 

Better description of reality (= better estimate of 
water storages)  
Disaggregation of the integral GRACE signal:  
• horizontally 
• vertically 

Separation of TWS into 
storage compartments 
 

Total  
water  

Storage 
(TWS) 

 groundwater 

snow  

surface water 

…
 

soil 

(NASA) 
 



Annette Eicker EGSIEM Autumn School 2017 8 

Overview 

(Hydrological) model 
 

Observations (e.g. GRACE) 
 

Data  
Assimilation 

(DA) 

Better description of reality (= better estimate of 
water storages)  
Disaggregation of the integral GRACE signal:  
• horizontally 
• vertically 
• in time 

From monthly to e.g.  daily time steps 
 

groundwater 

(NASA) 
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So we want to combine model results 
and observations. 

 
What does this mean? 
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Data assimilation 

model 

truth 

time 
water storages 

hydrological model 

GRACE  

total water storage 

observation 

prediction 

update 

GRACE observation  

is monthly mean! 

Figure modified from: 

Introduction to Data Assimilation for Scientists and Engineers 

O. Thual, Open Learn. Res. Ed. INPT 0202 (2013) 6h 
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2 21 1
( ) ( )

2 2C
J G


   

The update minimizes a combination of distances => cost function 

Data assimilation 

model 

truth 

time 

observation 

prediction 

update 

How do we determine the update? 
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2 21 1
( ) ( )

2 2C
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
   

The update minimizes a combination of distances => cost function 

Data assimilation 

model 

truth 

time 

observation 

prediction 

update 

distance between update 

and model prediction 

How do we determine the update? 
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Data assimilation 

model 

truth 

time 

2 21 1
( ) ( )

2 2C
J G


   

The update minimizes a combination of distances => cost function 

observation 

prediction 

update 

distance between update 

and model prediction 

distance between update 

and observations 

How do we determine the update? 
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Data assimilation 

2 21 1
( ) ( )

2 2C
J G


   

The analysis minimizes a combination of distances => cost function 

observation 

prediction 

update 

  

In general, the model output 

cannot be observed directly, 

but a function of the model results 

 

  

We take the accuracies of the 

observations Σ and of the model 

prediction C into account 

 
Example: 

              water storage in all  

              individual model  

              compartments (e.g.  

 groundwater, soil moiture) 

groundwater 

snow  

surface water 
…

 

soil 

( )G              sums up the compartments 

 to  obtain TWS 

Total 

water 

storage 

(TWS) 
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Data assimilation 

2 21 1
( ) ( )

2 2C
J G


   

The analysis minimizes a combination of distances => cost function 

                                        Different approaches: 
 

• Nudging  

• simple weighting between model and observations 

• 3D / 4D Var 

• mostly atmospheric community 

• optimization problem requires computation of gradients  

     => adjoint model, computationally intensive! 

• no covariance matrix for assimilated model 

• (Ensemble) Kalman filter 

• no gradient computation required 

• covariance matrix of model and observations required 

 

observation 

prediction 

update 
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(Ensemble) Kalman filter 
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observations (GRACE) 

k k kl H x

ll
Σwith 

Kalman  

Filter 

prediction (model) 

1( )k kf

x x

xx
Cwith 

prediction for  

this month 

=> „model state“ 

previous  

month 
total water storage 

(observed by  

GRACE) individual model  

compartments 

model errors 

observation 

error 

Kalman (1960) 

Kalman filter 

relation between model state  

and observations. 

Here: adding up all the  

individual compartments: ( )G
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Kalman filter 

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

xx
Cwith 

Example: 

WaterGAP 

Hydrology Model 

(WGHM) 

(See also lecture: Modeling 

the hydrological cycle) 

storage compartments 

=  

„model state“ 
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Kalman filter 

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

xx
Cwith 

Full covariance matrix 

(grid) 
Total water storage 

(grid) 

GRACE monthly solutions 
 

• e.g. ITSG-Grace2016 

• full covariance matrix 

0.5°x0.5° 

grid 

WGHM 

CANOPY 

SNOW 

SOIL 

LAKE (local) 

WETLAND (local) 

LAKE (global) 

WETLAND (global) 

RESERVOIR 

RIVER 

GROUNDWATER 

 compartments: 
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Deriving the Kalman filter equation 

Kalman filter 

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

xx
Cwith 

xx
C

ll
Σ

Least squares adjustment with two sets of „observations“ 

1

2

1

0
( )

0

xx

ll

C 




 
  

 

P
ε

P
with 

   
1

ˆ T T

k k xx k k xx k ll k k k


     x x C H H C H Σ l H x

matrix  

identities 

ε

   
1

ˆ T T

xx k ll k xx k k ll k


   x P H P H P x H P l

Estimation of unknown parameters by accumulation of normal equations: 

e.g.: Koch (1999) 
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Kalman filter 

Deriving the Kalman filter equation 

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

xx
Cwith 

xx
C

ll
Σ

Least squares adjustment with two sets of „observations“ 

1

2

1

0
( )

0

xx

ll

C 




 
  

 

P
ε

P
with 

   
1

ˆ T T

xx k ll k xx k k ll k


   x P H P H P x H P l

Estimation of unknown parameters by accumulation of normal equations: 

   
1

ˆ T T

k k xx k k xx k ll k k k


     x x C H H C H Σ l H x

matrix  

identities 

Kalman gain 

e.g.: Koch (1999) 

ε
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Kalman filter 

 l Hx

Kalman filter update 

  x x

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

xx
Cwith 

Simplifications: 

x, l are only one scalar values 

H is scalar h 

 
2

2 2 2

xx

xx ll

h
x x l hx

h



 

    


 
1

T T

xx xx ll



C H HC H ΣKalman gain 

• The Kalman gain determines 

the influence of the observations 

• It depends on the accuracies of 

    - the observations 

    - the model  
ll

Σ

xx
C 2, xx

2, ll
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Kalman filter 

 l Hx

Kalman filter update 

  x x

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

xx
Cwith 

• The Kalman gain determines 

the influence of the observations 

• It depends on the accuracies of 

    - the observations  

    - the model 

Simplifications: 

x, l are only one scalar values 

H is scalar h 

 
2

2 2 2

xx

xx ll

h
x x l hx

h



 

    


 
1

T T

xx xx ll



C H HC H Σ

gain matrix 

ll
Σ

xx
C 2, xx

2, ll
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Kalman filter 

 l Hx

Kalman filter update 

  x x

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

xx
Cwith 

 
1

T T

xx xx ll



C H HC H Σ

gain matrix 

Problem: 
 

In general, we do not know the model 

uncertainties Cxx ! 
 

=> Solution: Ensemble approach 

We run not one single model, but use 

several slightly different model runs 
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Ensemble Kalman filter 
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Kalman filter 

 l Hx

Kalman filter update 

  x x

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

 
1

T T

xx xx ll



C H HC H Σ

gain matrix 

1( )k kf

x x

1( )k kf

x x

…
 

sample 2 

sample N 

empirical ensemble covariance matrix 

ensemble mean 

1
( ) ( )

1

T

xx i i i i

i

x x x x
N

      

C

See also: 

Evensen (2003) 

Evensen (2009) 
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Kalman filter 

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

1( )k kf

x x

1( )k kf

x x

…
 

sample 2 

sample N 

empirical ensemble covariance matrix 

ensemble mean 

1
( ) ( )

1

T

xx i i i i

i

x x x x
N

      

C

What causes uncertainties?? 

- model set-up (including calibration 

parameters) 

-   start values of model run (initial storage) 

-   climate forcing data (e.g. precipitation) 

k k kl H x

- calibration parameters: easy when given 

probability density function 

- initial storage: model spin-up runs 

- climate forcing: e.g. use different data sets 

- model uncertainty: use different versions 

of model equations 

How can we simulate them? 
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Kalman filter 

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

1( )k kf

x x

1( )k kf

x x

…
 

sample 2 

sample N 

empirical ensemble covariance matrix 

ensemble mean 

1
( ) ( )

1

T

xx i i i i

i

x x x x
N

      

C

original model 

ensemble mean 

samples 

What causes uncertainties?? 

model uncertainty 

(ensemble spread) 
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Kalman filter 

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

1( )k kf

x x

1( )k kf

x x

…
 

sample 2 

sample N 

empirical ensemble covariance matrix 

ensemble mean 

1
( ) ( )

1

T

xx i i i i

i

x x x x
N

      

C

 L HX

Kalman filter update 

  X X  
1

T T

xx xx ll



C H HC H Σ

gain matrix 

See also: 

Evensen (2003) 

Evensen (2009) 
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Kalman filter 

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

1( )k kf

x x

1( )k kf

x x

…
 

sample 2 

sample N 

empirical ensemble covariance matrix 

ensemble mean 

1
( ) ( )

1

T

xx i i i i

i

x x x x
N

      

C

 L HX

Kalman filter update 

  X X  
1

T T

xx xx ll



C H HC H Σ

gain matrix 

Next slides:  
xxC

See also: 

Evensen (2003) 

Evensen (2009) 
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Empirical model covariance matrix Cxx 

Cell 1 Cell 2 
C

e
ll 

1
 

C
e
ll 

2
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Empirical model covariance matrix Cxx 

Cell 1 Cell 2 
C

e
ll 

1
 

C
e
ll 

2
 

… 

2

5,5

1

1
( )

1

N

GW GW

i

x x
N

 



 

C

Variance 

groundwater 

How much do the groundwater 

model predictions vary in the 

different samples? 

=> How large is the uncertainty of 

modeled groundwater in cell 1? 

snow 

ensemble mean 
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Empirical model covariance matrix Cxx 

Cell 1 Cell 2 

… 

C
e
ll 

1
 

C
e
ll 

2
 

groundwater 

snow 

Covariances 

• Between different 

compartments of the same cell 

• Between the same 

compartment in different cells 

• Between different 

compartments in different cells 
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Variances of model predictions 

groundwater 

snow 

High Plains aquifer 

Mississippi river basin 
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Variances of model predictions 

Cell 1 Cell 2 

… 

C
e
ll 

1
 

C
e
ll 

2
 

Problem: 

In a river basin, we can have 10000s of 

model states, but we can use only a 

limited number of ensemble runs  

(~10s to a few 100) 

=> This matrix always has a rank deficit 
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Kalman filter 

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

1( )k kf

x x

1( )k kf

x x

…
 

sample 2 

sample N 

empirical ensemble covariance matrix 

ensemble mean 

1
( ) ( )

1

T

xx i i i i

i

x x x x
N

      

C

 L HX

Kalman filter update 

  X X  
1

T T

xx xx ll



C H HC H Σ

gain matrix 

Evensen, G.: Data assimilation: the ensemble Kalman 

Filter. Springer (2009) 

Next slides:  
ll
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GRACE observation covariance matrix 

GRACE covariance matrix:  

• uncertainties of TWS in each GRACE evaluation cell 

• correlations between TWS in different cells  

Do not have to be the same (e.g. 0.5°) cells used by the model 

 aggregation to larger cells possible/advisable 

 discretization of GRACE! 
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Reminder: Lecture/practical GRACE analysis  

GRACE observation covariance matrix 

GRACE covariance matrix:  

• uncertainties of TWS in each GRACE evaluation cell 

• correlations between TWS in different cells  

0

2 1
( , ) ( , )

3 1

n
e

nm nm

n m nn

R n
TWS a Y

k


   



 


  


 

Compute total water storage (TWS)  

at each grid point  
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l Aa

In matrix notation:  

GRACE observation covariance matrix 

GRACE covariance matrix:  

• uncertainties of TWS in each GRACE evaluation cell 

• correlations between TWS in different cells  

0

2 1
( , ) ( , )

3 1

n
e

nm nm

n m nn

R n
TWS a Y

k


   



 


  


 

Compute total water storage (TWS)  

at each grid point  

Covariance matrix  

of monthly spherical 

harmonic coefficients 

can be downloaded  

aaΣ

Cov.matrix of grid values 

T

ll aaΣ AΣ A
(variance propagation) 
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llΣ for Mississippi basin, 0.5° cells 

GRACE observation covariance matrix 

GRACE covariance matrix:  

• uncertainties of TWS in each GRACE evaluation cell 

• correlations between TWS in different cells  

Cov.matrix of grid values 

T

ll aaΣ AΣ A
(variance propagation) 

Strong correlations depending on 

sampling size 

(GRACE TWS grid) 

Matrix 

possibly ill  

conditioned 
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Kalman filter 

k k kl H x

observations (GRACE) 

ll
Σwith 

Kalman  

Filter 1( )k kf

x x

prediction (model) 

1( )k kf

x x

1( )k kf

x x

…
 

sample 2 

sample N 

empirical ensemble covariance matrix 

ensemble mean 

1
( ) ( )

1

T

xx i i i i

i

x x x x
N

      

C

 L HX

Kalman filter update 

  X X  
1

T T

xx xx ll



C H HC H Σ

Evensen, G.: Data assimilation: the ensemble Kalman 

Filter. Springer (2009) 

Both covariance matrices 

might be difficult! 
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One more aspect: 
Parameter calibration 
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Climate input data 

Time series of, e.g., 

- Precipitation 

- Temperature 

- Solar radiation 

- Air humidity 

Model output 

Time series of, e.g., 

- Water storage 

- River discharge 

- Groundwater recharge 

Model parameters 

- describing, e.g., topography, 

vegetation, soil characteristics 

- conceptual parameters 

Evaluate model 

performance 

Model equations 

representing water 

fluxes and storage 

processes 

Modify (Calibrate) 

Stop if 

acceptable 

Observed data 

- river discharge 

- GRACE water storage  

- soil moisture 

- water level (altimetry) 

- ET products 

-…. 

Data assimilation 

Data assimilation 
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k k kl A x

observations (GRACE) 

ll
Σwith 

Kalman filter 

4

4 

Kalman  

Filter 

Total water storage 

(grid) 

1( )k kf

x x

prediction (model) 

xx
Cwith 

Full covariance matrix 

(grid) 

0.5°x0.5° 

grid 

23 calibration  

parameters + 

CANOPY 

SNOW 

SOIL 

LAKE (local) 

WETLAND (local) 

LAKE (global) 

WETLAND (global) 

RESERVOIR 

RIVER 

GROUNDWATER 

 compartments: 

GRACE monthly solutions 
 

• e.g. ITSG-Grace2016 

•full covariance matrix 

WGHM 
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Calibration parameters 

Reminder: Lecture „Modeling the hydrological cycle“ 
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Parameter calibration 

Update calibration parameters together with water storage states 

=> extend state vector x by (a subset of the) calibration parameters 

calibration AND assimilation in one step => C/DA approach 

Advantage: parameters that fit „better“ to reality can improve the 

model beyond the data period 
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Parameter calibration 

Update calibration parameters together with water storage states 

=> extend state vector x by (a subset of the) calibration parameters 

calibration AND assimilation in one step => C/DA approach 

Parameters might vary strongly. 

Which values for parameters are realistic? 
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Parameter calibration 

0.3 3 

Uniform? 

0.3 3 

Triangle? 

0.3 3 

Something else? 

Introducing uncertainty for parameters: 

 What values are realistic for each parameter? 

 How is the distribution? 

Update calibration parameters together with water storage states 

=> extend state vector x by (a subset of the) calibration parameters 

calibration AND assimilation in one step => C/DA approach 
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Examples:  
Assimilation results 
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Examples for assim. GRACE into hydr. models 

Zaitchik et al. (2008) 
 

- first use of EnKF( smoother) 

- basin averages for GRACE 

- simple GRACE error model 

- improved agreement of assimilated 

model to measured groundwater 

 

Li et al. 2012 

- validation against measured discharge 

- European river basins  

Houborg et al. 2012 

- focus on drought monitoring 

The same approach was used by:  

Forman et al. 2012 

- snow dominated basin 
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Forman et al. (2012): Mackenzie Basin 

   

Assimilated model run 
 

- fits better to GRACE 

- validation against 

independent estimate of 

snow water equivalent 

      => difficult 

  

model (original) 

model assimilated 

GRACE 

(Forman et al. 2012) 

  

model (original) 

model assimilated 

snow water equivalent 
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Examples for assim. GRACE into hydr. models 

Zaitchik et al. (2008) 
 

- first use of EnKF( smoother) 

- basin averages for GRACE 

- simple GRACE error model 

- improved agreement of assimilated 

model to measured groundwater 

 

Li et al. 2012 

- validation against measured discharge 

- European river basins  

Houborg et al. 2012 

- focus on drought monitoring 

The same approach was used by:  

Forman et al. 2012 

- snow dominated basin 
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Li et al. (2012): Europe 

model (original) assimilated model GRACE 

dryness rank TWS 

(Li et al. 2012) 

• Model: NASA CLSM 

• Ensemble Kalman Smoother 

dryness rank TWS 
dry wet 
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Li et al. (2012): Europe 

model (original) assimilated model GRACE 

dryness rank TWS 

(Li et al. 2012) 

• Model: NASA CLSM 

• Ensemble Kalman Smoother 

dry wet 
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Li et al. (2012): Europe 

 model (original) 

 GRACE 

 assimilated model 

(Li et al. 2012) 

   

Correlation with discharge 

   

Assimilated model run 
 

- fits better to GRACE 

- shows higher correlation to 

measured discharge 

(validation) 
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Examples for assim. GRACE into hydr. models 

Schumacher (2012) 

Eicker et al. (2014) 

- C/DA approach 

- strict error propagation  

- gridded GRACE data 

- model: WGHM 

Zaitchik et al. (2008) 
 

- first use of EnKF( smoother) 

- basin averages for GRACE 

- simple GRACE error model 

- improved agreement of assimilated 

model to measured groundwater 

 

Li et al. 2012 

- validation against measured discharge 

- European river basins  

Houborg et al. 2012 

- focus on drought monitoring 

The same approach was used by:  

Forman et al. 2012 

- snow dominated basin Schumacher (2016) 

-  PhD thesis on data assimilation 

Schumacher et al (2017, submitted) 

- drought assessment in the Murray–     

     Darling basin (Australia) 

Schumacher et al. (2016) 

-  Impact of GRACE error information 

Kumar et al. 2016 

- gridded GRACE data + distributed errors 

Girotto et al. 2016 

- gridded GRACE data + SMAP 
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Schumacher et al. 2017 (submitted) 

Schumacher et al. (2017): Australia 

Murray – Darling Basin 
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Examples for assim. GRACE into hydr. models 

Schumacher (2012) 

Eicker et al. (2014) 

- C/DA approach 

- strict error propagation  

- gridded GRACE data 

- model: WGHM 

Zaitchik et al. (2008) 
 

- first use of EnKF( smoother) 

- basin averages for GRACE 

- simple GRACE error model 

- improved agreement of assimilated 

model to measured groundwater 

 

Tangdamrongsub et al. (2017) 
 

- use of full GRACE covariance 

matrices 

Li et al. 2012 

- validation against measured discharge 

- European river basins  

Houborg et al. 2012 

- focus on drought monitoring 

The same approach was used by:  

Forman et al. 2012 

- snow dominated basin Schumacher (2016) 

-  PhD thesis on data assimilation 

Schumacher et al (2017, submitted) 

- drought assessment in the Murray–     

     Darling basin (Australia) 

Schumacher et al. (2016) 

-  Impact of GRACE error information 

Kumar et al. 2016 

- gridded GRACE data + distributed errors 

Girotto et al. 2016 

- gridded GRACE data + SMAP 
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(Kumar et al. 2016) 

 model (original) 

 GRACE 

 assimilated model 

Kumar et al. (2016): USA 
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Kumar et al. (2016): USA 

  

Validation: observed soil moisture 

(Kumar et al. 2016) 
improvement 
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Summary 

Data assimilation: concept 
• combining observations and model results 
• to better describe reality 
• to separate the integral GRACE signal (space, time, vertical) 
 
 
 
 

(Ensemble) Kalman filter 
• adaption to specific problem: assimilating GRACE into hydrological model 
• challenges: 

• uncertainties of model not known (=> ensemble approach) 
• ill-conditioned covariance matrices of model and observations 
• choice of GRACE discretization (grid size) 

 
• parameter calibration within the same step as assimilation  
     (=> C/DA approach) 

Some assimilation results 
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Outlook 

(Hydrological) model 
 

Observations (e.g. GRACE) 
 

Data  
Assimilation 

(DA) 

Combining data and models will be come more and more important 
in the future to make better use of the data and to understand the 
processes governing global change! 

(NASA) 
 

Thank you very much for your attention! 
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