

Validation of the EGSIEM combined monthly gravity fields with GNSS

Overview of validation work within WP3 and WP4

Qiang CHEN

University of Luxembourg

EGSIEM Final Project Meeting

8-9 February 2018

UNIVERSITÄT

Objectives

- Validation of the EGSIEM official two-year combined gravity solutions
 - 2006&2007
 - WP4
- Validation of the EGSIEM Level-3 gravity products for hydrology
 - 2006&2007
 - WP4
- Validation of the EGSIEM long-term combined solutions
 - 2002-2014
 - WP3
- Validation of the reference frame data
 - 2003-2014
 - WP3

Concept of Validation

- GNSS observed vertical displacements
 - Monthly averaged reference frame data (EGSIEM)
 - Monthly averaged ITRF2014 time series (IGN, France)
 - Monthly averaged JPL GNSS time series (Public available)

• GRACE-derived vertical displacements

$$\begin{split} u_r(\theta_P, \lambda_P) = & R \sum_{n=0}^{\infty} \frac{h'_n}{1 + k'_n} \sum_{m=0}^n \tilde{P}_{nm}(\cos \theta_P) \cdot \\ & (\triangle C_{nm} \cos(m\lambda_P) + \triangle S_{nm} \sin(m\lambda_P)) \end{split}$$

- R: Earth's radius
- h'_n, k'_n : loading Love numbers
- \tilde{P}_{nm} : normalized Legendre functions
- Δ*C*_{*nm*}, Δ*S*_{*nm*}: gravity spherical harmonic coefficients from GRACE

Metrics

- Correlation
- WRMS reduction and its variants
 - Degree WRMS reduction
 - Accumulative degree WRMS reduction

WRMS reduction is similar (or equivalent) to Relative Explained Variance used by Lea in validation using the OBP data!

Post-processing reference frame data

- Reference frame data (Repro3, GNSS position time series) provided by UBERN in SINEX format from 2003 to 2014
 - 312 stations for further processing (393 stations in total with 81 stations removed due to short time span, very big gaps or very bad data)

EGSIEM Final Meeting, 8-9 February 2018, Bern

Post-processing reference frame data

Processing procedure

- Coordinate transformation from XYZ to NEU
- Offsets detection and removal
- Removing outliers
- Average daily data into monthly data

Offsets detection and removal

- Including jumps, coseismic offsets and postseismic relaxation
 - 264 out of 312 stations with offsets (84.62%)
 - 33 out of 264 stations with postseismic relaxation
- Visual inspection and detection with offset datasets from NGL, JPL and SOPAC
- Extended Trajectory Model (ETM) to remove postseismic relaxation (Bevis and Brown, 2014)

Post-processing reference frame data

• Example of offsets detection and removal: NTUS

• Comparison with respect to the ITRF2014 time series: POVE

EGSIEM Final Meeting, 8-9 February 2018, Bern

Validation of the official combined solutions

Post-processing monthly gravity fields

- Monthly gravity fields of 2006&2007
 - EGSIEM combined solutions at NEQ level and Solution level
 - Products from four ACs (AIUB, GFZ, GRGS, ITSG)
 - Products from three official GRACE ACs (GFZ RL05a, CSR RL05, JPL RL05.1)
- Standard processing steps
 - Replacing C₂₀ from SLR (Cheng et al., 2011)
 - Restoring degree-1 from SLR (Sośnica et al., 2015)
 - Adding back AOD1B GAC RL05
 - Filtering with a Gaussian filter 500 km
 - Deriving displacements at GNSS stations
 - Removing the mean and trend

With respect to ITRF2014 time series – full signal level

- Degree WRMS reduction (top)
 - higher WRMS reductions at low SH degrees
 - best performance at degree 2 from EGSIEM-GRGS (6.38%)
- Accumulative Degree WRMS reduction (bottom)
 - no significant contributions beyond degree 30
 - two EGSIEM combined solutions with the best accumulative degree WRMS reductions

With respect to ITRF2014 time series – full signal level

EGSIEM-NEQ		EGSIEM-SOL	EGSIEM-AIUB		
- 7 - 6					
		Mean WRMS reduction [%]	Positive WRMS reduction [%]		
	EGSIEM-NEQ	25.48	89.95		
	EGSIEM-SOL	25.18	89.43		
	EGSIEM-AIUB	24.50	89.69		
	EGSIEM-GFZ	22.17	83.51		
) 	EGSIEM-GRGS	20.96	81.70		
	EGSIEM-ITSG2016	24.78	88.66		
)* ******	GFZ RL05a	22.61	84.79		
)° 🔍 💘	CSR RL05	23.78	88.14		
	JPL RL05.1	22.56	86.08		
-180° -120°					
	-60 -50 -40 -30 -	20 – 10 0 10 20 30 4 WRMS reduction	40 50 60 70 80		

The mean WRMS reductions shown here are much better than these from Gu et al. (2017, GRL, Table S3) who have achieved maximum values of 15%.

EGSIEM Final Meeting, 8-9 February 2018, Bern

With respect to ITRF2014 time series – annual signal level

- Degree WRMS reduction (top)
 - high degree WRMS reductions at annual period than that at full signal
- Accumulative Degree WRMS reduction (bottom)
 - up to median values around 70% for all gravity models
 - similar performances among different gravity models at annual period

With respect to ITRF2014 time series – annual signal level

<u> </u>	EGSIEM-NEQ	EGSIEM-SOL	EGSIEM-AIUB	<u>B</u>	
🖕 🍳		Median WRMS	Positive WRMS		
		reduction [%]	reduction [%]		
	EGSIEM-NEQ	70.05	88.40		
	EGSIEM-SOL	70.74	88.14		
	EGSIEM-AIUB	70.64	88.40		
	EGSIEM-GFZ	68.28	87.11		
	EGSIEM-GRGS	67.03	88.40		
	EGSIEM-ITSG2016	71.63	88.40		
50°	GFZ RL05a	70.20	88.40		
0°	CSR RL05	70.20	87.89		
	JPL RL05.1	69.17	87.63		
.0°.				•-•-• <u>`</u>	
-180° -120°	-60° 0° 60° 120° 180°				
	-60 -50 -40 -30 -20	-10 0 10 20 30 40 50	0 60 70 80 90 100		
		WRMS reduction			

Up to 99% agreement at annual period for a large group of GNSS stations

EGSIEM Final Meeting, 8-9 February 2018, Bern

With respect to ITRF2014 time series – residual level

See more detail in D4.3

EGSIEM Final Meeting, 8-9 February 2018, Bern

Validation of the Level 3 products for hydrology

Datasets

- L3 products
 - EGSIEM L3 products for land (2006&2007)
 - GRACE Tellus L3 products for land from GFZ, CSR and JPL (2006&2007)
- GNSS data
 - Monthly averaged ITRF2014 time series at 388 GNSS stations

EGSIEM L3 vs GRACE Tellus L3 (Land)

	EGSIEM L3 for Land	GRACE Tellus L3 for Land
C ₂₀ coefficient	no replacement	replaced from SLR (Cheng et al, 2011)
Degree-1 SHCs	restored from SLR by Sośnica et al (2015)	restored from Swenson et al (2008)
GIA correction	correction applied based on the GIA model from A and Wahr (2013)	correction applied based on the GIA model from A and Wahr (2013)
Filter scheme	time-varying filters (D4.2)	destriping filter plus Gaussian filter of 300 km
GAC	not added back	not added back
EWH grids	$1^{\circ} imes 1^{\circ}$ global grids	$1^{\circ} \times 1^{\circ}$ global grids

Green's functions approach for deriving displacements from L3 grids at GNSS stations

With respect to ITRF2014 time series – full signal level

EGSIEM Final Meeting, 8-9 February 2018, Bern

With respect to ITRF2014 time series – annual signal level

EGSIEM Final Meeting, 8-9 February 2018, Bern

Validation of the EGSIEM long-term combined solutions

Post-processing monthly gravity fields

- Long-term monthly gravity fields (2002.8 2014.10)
 - EGSIEM combined solutions (TEST version, 2002.8-2014.10, see D4.1)
 - Products from three official GRACE ACs (GFZ RL05a, CSR RL05, JPL RL05.1)
 - Additional products from AIUB RL02 and ITSG2016
- Standard processing steps
 - Replacing C₂₀ from SLR (Cheng et al., 2011)
 - Restoring degree-1 from Swenson et al (2008)
 - Adding back AOD1B GAC RL05
 - Filtering with a Gaussian filter 500 km
 - Deriving displacements at GNSS stations
 - Removing the mean and trend

With respect to reference frame data – full signal level

- Degree WRMS reduction (top)
- Accumulative Degree WRMS reduction (bottom)
- Similar characteristics as the the two-year monthly gravity models

EGSIEM Final Meeting, 8-9 February 2018, Bern

With respect to reference frame data – full signal level

EGSIEM combined			AIUB,RL02			
© *						
Reference frame data (312 stations)		ITRF2014 (928 st	ITRF2014 residuals (928 stations)		JPL GNSS time series (788 stations)	
	Mean [%]	Positive [%]	Mean [%]	Positive [%]	Mean [%]	Positive [%]
EGSIEM combined	23.9	88.1	20.9	89.2	16.0	88.8
AIUB RL02	23.0	87.4	19.8	87.7	16.0	87.5
CSR RL05	24.5	89.7	21.2	90.6	15.7	87.1
GFZ RL05a	21.9	86.9	18.1	85.8	13.8	85.9
JPL RL05.1	22.8	86.9	19.2	88.4	15.2	87.7
ITSG2016	24.5	90.1	21.1	89.7	16.1	87.9
					° 120° 180°)°

The mean WRMS reductions shown here are also much better than these from Gu et al. (2017, GRL, Table S3) who have achieved maximum values of 15%.

EGSIEM Final Meeting, 8-9 February 2018, Bern

With respect to reference frame data – annual signal level

·	EGSIEM combined			AIUB.RL02			
	Reference frame data (312 stations)		ITRF2014 (928 st	ITRF2014 residuals (928 stations)		JPL GNSS time series (788 stations)	
	Median [%]	Positive [%]	Median [%]	Positive [%]	Median [%]	Positive [%]	
EGSIEM combined	73.5	87.1	67.7	89.4	61.4	78.8	
AIUB RL02	73.6	87.4	68.8	88.9	64.1	79.6	
CSR RL05	74.0	88.1	69.7	89.1	59.8	78.2	
GFZ RL05a	73.5	88.1	68.4	89.1	57.8	77.6	
JPL RL05.1	70.1	86.5	66.8	88.7	61.6	80.3	
ITSG2016	73.6	87.8	69.0	89.7	60.7	79.0	
-180° -120° -60° 0° 60° 120° 180° -180° -120° -60° 0° 60° 120° 180° -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 $100WBMS reduction$							

See more detail in D3.2

EGSIEM Final Meeting, 8-9 February 2018, Bern

Validation of the reference frame data

236 common GNSS stations

	Referenc	ce frame data	ITRF2014 residuals JPL GNSS time s		S time series	
	Mean [%]	Positive [%]	Mean [%]	Positive [%]	Mean [%]	Positive [%]
EGSIEM combined	23.2	86.4	25.5	90.3	18.1	94.5
AIUB RL02	22.3	85.6	24.6	88.6	17.7	91.1
CSR RL05a	23.8	88.1	25.8	90.7	18.0	94.1
GFZ RL05	21.1	84.8	23.2	87.7	16.2	91.5
JPL RL05.1	21.9	85.2	23.9	90.3	17.4	93.6
ITSG2016	23.6	88.1	25.6	90.7	18.1	93.6

Performance of the EGSIEM-generated reference frame data close to ITRF2014 time series, and much better than JPL GNSS time series.

EGSIEM Final Meeting, 8-9 February 2018, Bern

Summaries

- Generally, the GRACE-derived vertical displacements have good agreement with the GNSS-observed counterparts, especially at the annual period.
- The official EGSIEM combined solutions demonstrate the best performance with respect to other gravity products for 2006&2007.
- The EGSIEM L3 products for land outperforms the counterparts from GRACE Tellus for 2006&2007.
- The long-term EGSIEM combined solutions show similar performances with CSR RL05 and ITSG2016, and slightly better than others.

